Numerical Construction of Gaussian Quadrature Formulas for
نویسندگان
چکیده
Most nonclassical Gaussian quadrature rules are difficult to construct because of the loss of significant digits during the generation of the associated orthogonal polynomials. But, in some particular cases, it is possible to develop stable algorithms. This is true for at least two well-known integrals, namely ¡l-(Loêx)-x°f(x)dx and ¡Ô Em(x)f(x)-dx. A new approach is presented, which makes use of known classical Gaussian quadratures and is remarkably well-conditioned since the generation of the orthogonal polynomials requires only the computation of discrete sums of positive quantities. Finally, some numerical results are given.
منابع مشابه
Optimal Quadrature Formulas for the Cauchy Type Singular Integral in the Sobolev Space
Abstract This paper studies the problem of construction of the optimal quadrature formula in the sense of Sard in (2) 2 ( 1,1) L − S.L.Sobolev space for approximate calculation of the Cauchy type singular integral. Using the discrete analogue of the operator 4 4 / d dx we obtain new optimal quadrature formulas. Furthermore, explicit formulas of the optimal coefficients are obtained. Finally, in...
متن کاملGaussian quadrature for sums: A rapidly convergent summation scheme
Gaussian quadrature is a well-known technique for numerical integration. Recently Gaussian quadrature with respect to discrete measures corresponding to finite sums has found some new interest. In this paper we apply these ideas to infinite sums in general and give an explicit construction for the weights and abscissae of Gaussian formulas. The abscissae of the Gaussian summation have a very in...
متن کاملOn generalized averaged Gaussian formulas
We present a simple numerical method for constructing the optimal (generalized) averaged Gaussian quadrature formulas which are the optimal stratified extensions of Gauss quadrature formulas. These extensions exist in many cases in which real positive Kronrod formulas do not exist. For the Jacobi weight functions w(x) ≡ w(α,β)(x) = (1− x)α(1 + x)β (α, β > −1) we give a necessary and sufficient ...
متن کاملA Cardinal Function Algorithm for Computing Multivariate Quadrature Points
We present a new algorithm for numerically computing quadrature formulas for arbi-trary domains which exactly integrate a given polynomial space. An effective method for constructingquadrature formulas has been to numerically solve a nonlinear set of equations for the quadraturepoints and their associated weights. Symmetry conditions are often used to reduce the number ofequatio...
متن کاملTrigonometric Gaussian quadrature on subintervals of the period
We construct a quadrature formula with n+ 1 angles and positive weights, exact in the (2n+1)-dimensional space of trigonometric polynomials of degree ≤ n on intervals with length smaller than 2π. We apply the formula to the construction of product Gaussian quadrature rules on circular sectors, zones, segments and lenses. 2000 AMS subject classification: 65D32.
متن کامل